Lecture 1

Introduction to lossless compression

Plan: Lecture 1-3: theory and concepts from information theory

A simple probability distribution

Consider:

- Alphabet $\mathcal{X}=\{A, B, C, D\}$
- Uniform probability distribution: $P(A)=P(B)=P(C)=P(D)=\frac{1}{4}$

A text file generating by independently sampling one million symbols from this distribution:
\$ cat abcd.txt
ACABDADCBDDC....

What is the size of this file?

Bits and bytes

bit: a unit of information expressed as either a 0 or 1 in binary notation.
byte: a group of eight bits operated on as a unit.
1 byte $(B)=8$ bits
1 kilobyte $(\mathrm{KB})=1000$ bytes $=8000$ bits
So on for MB, GB, TB, PB, EB, ...
Note: Sometimes we like to use powers of two, e.g., 1 kilobyte $=1024$ bytes.

abcd.txt

Size on disk: 1 MB (1 million bytes).
Why 1 byte per letter/character?

ASCII TABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	©	96	60	
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSTON]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	,	74	4A	J	106	6 A	j
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4 C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHITT OUT]	46	2E	.	78	4E	N	110	6 E	n
15	F	[SHIFT IN]	47	2 F	1	79	4F	0	111	6 F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	5
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	[END OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1 A	[SUBSTITUTE]	58	3 A	:	90	5A	z	122	7 A	z
27	1 B	[ESCAPE]	59	3B	;	91	5B	[123	7B	$\{$
28	1 C	[FILE SEPARATOR]	60	3 C	<	92	5 C	1	124	7 C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1 E	[RECORD SEPARATOR]	62	3 E	>	94	5 E	\wedge	126	7E	\sim
31	1 F	[UNIT SEPARATOR]	63	3F	?	95	5 F	-	127	7F	[DEL]

ASCII Table

Symbol	ASCII code
A	1000001
B	1000010
C	1000011
D	1000100

8 bits $=1$ byte per symbol.
Can we do better?

Fixed bitwidth code

Symbol	Code
A	00
B	01
C	10
D	11

Bits/symbol?
Decoding?

Fixed bitwidth code

$k=|\mathcal{S}|$ different symbols implies at least $\left\lceil\log _{2} k\right\rceil$ bits per symbol in a fixed bitwidth code.

Can we do better? In the uniform distribution example above?

Uniform distribution

Symbol	Probability
A	0.5
B	0.5

Fixed bitwidth code: 1 bit/symbol

Non-uniform distribution

Symbol	Probability
A	0.49
B	0.49
C	0.01
D	0.01

Fixed bitwidth code: 2 bits/symbol
Can we do better? Closer to the previous page's 1 bit/base?

Non-uniform distribution

Symbol	Probability
A	0.49
B	0.49
C	0.01
D	0.01

Solution 1: C and D are low probability, let's just lose them - Lossy Compression (not commonly used for text/database/log data).

Non-uniform distribution

Symbol	Probability
A	0.49
B	0.49
C	0.01
D	0.01

Solution 2: Variable length codes: Use fewer bits for more probable symbols.

Variable length codes

Use fewer bits for more probable symbols

Symbol	Probability	Code
A	0.49	0
B	0.49	10
C	0.01	110
D	0.01	111

How to evaluate coding efficiency? Expected code length.

Expected code length

"Compressed size/Uncompressed size" - often in units bits/symbol.
Also sometimes called compression rate/compression ratio.
Warning: There's some variability in notation and definitions of these terms so be careful.

Let $l(x)$ denote the code length for symbol x with probability $P(x)$, where $x \in \mathcal{X}$.
Expected code length: $\mathbb{E}[l(X)]=\sum_{x \in \mathcal{X}} P(x) l(x)$

Expected code length

Symbol	Probability	Code
A	0.49	0
B	0.49	10
C	0.01	110
D	0.01	111

Expected code length: $\mathbb{E}[l(X)]=$?

Expected code length

Symbol	Probability	Code	$l(x)$
A	0.49	0	1
B	0.49	10	2
C	0.01	110	3
D	0.01	111	3

$\mathbb{E}[l(X)]=0.49 \times 1+0.49 \times 2+0.01 \times 3+0.01 \times 3=1.53$ bits $/$ symbol

Thoughts and conclusion

- Is the code above lossless? Can you decode it? <- homework for next lecture!

Thoughts and conclusion

- Is the code above lossless? Can you decode it? <- homework for next lecture!
- The non-uniform distribution above seems "worse" but "similar" to the uniform distribution on just A and B.

Thoughts and conclusion

- Is the code above lossless? Can you decode it? <- homework for next lecture!
- The non-uniform distribution above seems "worse" but "similar" to the uniform distribution on just A and B .
- In the next few lectures, we will learn how to compute the optimal compression rate and how we can get close to 1.14 bits/symbol for the above distribution (and no better).

Thank you!

