

Lecture 1

Introduction to lossless compression

Plan: Lecture 1-3: theory and concepts from information theory

A simple probability distribution

Consider:

- Alphabet $\mathcal{X} = \{A, B, C, D\}$
- Uniform probability distribution: $P(A) = P(B) = P(C) = P(D) = rac{1}{4}$

A text file generating by independently sampling one million symbols from this distribution:

\$ cat abcd.txt

ACABDADCBDDC....

What is the size of this file?

Bits and bytes

bit: a unit of information expressed as either a 0 or 1 in binary notation.

byte: a group of eight bits operated on as a unit.

1 byte (B) = 8 bits 1 kilobyte (KB) = 1000 bytes = 8000 bits So on for MB, GB, TB, PB, EB, ...

Note: Sometimes we like to use powers of two, e.g., 1 kilobyte = 1024 bytes.

abcd.txt

Size on disk: 1 MB (1 million bytes).

Why 1 byte per letter/character?

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	JDecimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	×
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	с
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1.00	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	ĥ
9	9	(HORIZONTAL TAB)	41	29)	73	49	1.1	105	69	1
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L.	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	Ρ	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r i
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	[END OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Х	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	v
26	1A	(SUBSTITUTE)	58	3A	1.0	90	5A	z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	L I	123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	Ĩ
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]
		_						-			

ASCII Table

Symbol	ASCII code	
А	1000001	
В	1000010	
С	1000011	
D	1000100	

8 bits = 1 byte per symbol.

Can we do better?

Fixed bitwidth code

Symbol	Code
A	00
В	01
С	10
D	11

Bits/symbol?

Decoding?

Fixed bitwidth code

 $k = |\mathcal{S}|$ different symbols implies at least $\lceil \log_2 k \rceil$ bits per symbol in a fixed bitwidth code.

Can we do better? In the uniform distribution example above?

Uniform distribution

Symbol	Probability
А	0.5
В	0.5

Fixed bitwidth code: 1 bit/symbol

Non-uniform distribution

Symbol	Probability
А	0.49
В	0.49
С	0.01
D	0.01

Fixed bitwidth code: 2 bits/symbol

Can we do better? Closer to the previous page's 1 bit/base?

Non-uniform distribution

Symbol	Probability
А	0.49
В	0.49
С	0.01
D	0.01

Solution 1: C and D are low probability, let's just lose them - Lossy Compression (not commonly used for text/database/log data).

Non-uniform distribution

Symbol	Probability
А	0.49
В	0.49
С	0.01
D	0.01

Solution 2: Variable length codes: Use fewer bits for more probable symbols.

Variable length codes

Use fewer bits for more probable symbols

Symbol	Probability	Code
А	0.49	0
В	0.49	10
С	0.01	110
D	0.01	111

How to evaluate coding efficiency? Expected code length.

Expected code length

"Compressed size/Uncompressed size" - often in units bits/symbol.

Also sometimes called compression rate/compression ratio.

Warning: There's some variability in notation and definitions of these terms so be careful.

Let l(x) denote the code length for symbol x with probability P(x), where $x\in\mathcal{X}$. Expected code length: $\mathbb{E}[l(X)]=\sum_{x\in\mathcal{X}}P(x)l(x)$

Expected code length

Symbol	Probability	Code
А	0.49	0
В	0.49	10
С	0.01	110
D	0.01	111

Expected code length: $\mathbb{E}[l(X)]$ = ?

Expected code length

Symbol	Probability	Code	l(x)
А	0.49	0	1
В	0.49	10	2
С	0.01	110	3
D	0.01	111	3

 $\mathbb{E}[l(X)] = 0.49 imes 1 + 0.49 imes 2 + 0.01 imes 3 + 0.01 imes 3 = 1.53$ bits/symbol

Thoughts and conclusion

• Is the code above lossless? Can you decode it? <- homework for next lecture!

Thoughts and conclusion

- Is the code above lossless? Can you decode it? <- homework for next lecture!
- The non-uniform distribution above seems "worse" but "similar" to the uniform distribution on just A and B.

Thoughts and conclusion

- Is the code above lossless? Can you decode it? <- homework for next lecture!
- The non-uniform distribution above seems "worse" but "similar" to the uniform distribution on just A and B.
- In the next few lectures, we will learn how to compute the optimal compression rate and how we can get close to 1.14 bits/symbol for the above distribution (and no better).

Thank you!